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Abstract
Southern Flounder Paralichthys lethostigma supports a multimillion dollar commercial and recreational fishery

in the Gulf of Mexico. Despite its economic importance, the Southern Flounder population has been declining for
decades. To improve the management of this fishery, both population trends and changes in environmental conditions
need to be considered. Using two different statistical modeling techniques, boosted regression tree (BRT) and artificial
neural network (ANN), a 29-year fisheries-independent record of juvenile Southern Flounder abundance in Texas
was examined to illustrate how environmental factors influence the temporal and spatial distribution of juvenile
Southern Flounder. Boosted regression trees show the presence of juvenile Southern Flounder is closely associated
with relatively low temperatures, low salinity levels, and high dissolved oxygen concentrations. Both ANN and BRT
models resulted in high predictive performance with slight spatial differences in predicted distribution. Both models
suggested high probability of occurrence in Galveston Bay and East Matagorda Bay. The ANN accurately predicted
higher probability of occurrence in Sabine Lake compared with the BRT model. Our results will provide tools for
fisheries managers to enhance management and sustainability of the Southern Flounder population. Moreover, these
results also identify a predictive framework for proactive approaches to ecosystem management by providing more
data to identify essential habitat features and understanding relationships between abiotic and biotic factors within
those habitats.

Declines in abundance and extensive exploitation of the
world’s fisheries and marine habitats have caused concern
among many researchers (Jackson et al. 2001; Pauly et al. 2002;
Hilborn et al. 2003; Halpern et al. 2008). Human impacts have
altered the distribution, quantity, and quality of marine habitats
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(Pyke 2004; Lotze et al. 2006). They have contributed to the
depletion of more than 90% of estuarine species, degraded wa-
ter quality, and accelerated species invasions, and have reduced
seagrass and wetland habitat among estuaries and coastal seas
by 65% (Lotze et al. 2006). Seventy-five percent of fisheries
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818 FROESCHKE ET AL.

worldwide are over exploited or fully exploited (NMFS 2002).
Within the USA, 17% of fisheries are subject to overfishing and
24% are overfished (NMFS 2008). Impacts from recreational
(Coleman et al. 2004) and commercial fishing and bycatch can
be significant contributors to the decline of fisheries (Jackson
et al. 2001; Pauly et al. 2002; Hilborn et al. 2003).

In the Gulf of Mexico, the Southern Flounder Paralichthys
lethostigma supports a multimillion dollar commercial and
recreational fishery, but declines in this stock (Froeschke et al.
2011) have led to reduced recreational and commercial catches.
Southern Flounder populations have been on the decline for
decades and are currently at all-time lows in Texas (Froeschke
et al. 2011). Management efforts for Southern Flounder in Texas
have focused on implementing regulations for recreational and
commercial fisheries, yet the population remains in decline,
suggesting that factors other than fishing may be negatively in-
fluencing the Southern Flounder population. Time-series analy-
sis indicated that both juvenile and adult Southern Flounder are
declining in Texas estuaries (Froeschke et al. 2011). Juvenile re-
cruitment is decreasing 1.3% per year (1977–2007), whereas the
adult population is decreasing at a rate of 2.5% per year (1975–
2008; Froeschke et al. 2011). Moreover, abundance trends of
juvenile and adult Southern Flounder are independent, particu-
larly with high mortality rates of postjuvenile flounder that oc-
curred during the 29-year study period (Froeschke et al. 2011).
Stunz et al. (2000) demonstrated that a reduced proportion of
Southern Flounder is reaching the age of maturity. To address
these concerns, the Southern Flounder population may benefit
from a shift towards an ecosystem-based approach incorporat-
ing interactions among physical and biological components of
the system management (Pikitch et al. 2004; Marasco et al.
2007; Crowder et al. 2008). Within this perspective, fisheries
management includes ecological factors that identify essential
fish habitat (EFH) including both abiotic and biotic components
of the environment.

Spatiotemporal models provide valuable information that
may enhance management and ensure sustainability of not only
the Southern Flounder fishery in particular but other fisheries
as well. The use of boosted regression trees (BRT) is relatively
new in ecological applications but has proven to be an effective
method to identify relationships between fish distribution pat-
terns and environmental predictors (Leathwick et al. 2006, 2008;
Froeschke et al. 2010; Froeschke and Froeschke 2011). More-
over, BRT can be effective in predicting the occurrence of ju-
venile Southern Flounder to determine EFH within the Aransas
Bay, Texas, complex (Froeschke et al., in press). The artificial
neural network (ANN) model is a well-established method for
identifying complex hydrographical patterns associated with the
abundance and dynamics of different phases in the life cycle of
fish (Suryanarayana et al. 2008). Many researchers have used
ANNs to predict fish recruitment (Kusakabe et al. 1997; En-
gelhard and Heino 2002) and age of fish (Potter et al. 1993;
Robertson and Morison 1999; Engelhard et al. 2003) from ex-
planatory variables (Suryanarayana et al. 2008).

The goal of this study was to provide additional informa-
tion that can be used for the management of Southern Flounder
by using statistical modeling techniques to explain how envi-
ronmental factors influence the temporal and spatial patterns
of juvenile fish. Additionally, this study compared a relatively
new modeling technique (BRT) with a well-accepted technique
(ANN). Specifically, this study (1) determined the relationship
between temporal (month, year), spatial (distance to the inlet),
and physical (temperature, turbidity, dissolved oxygen, salinity,
and depth) variables with the occurrence of juvenile Southern
Flounder; (2) used BRT and ANN models to make spatial pre-
dictions of the probability of presence in Texas bays; and (3)
compared the predictive power and predicted spatial distribution
of the trained and tested BRT and ANN.

METHODS
Study area.—The study was conducted in nine major bays

along the Texas coast, located along the northwestern Gulf
of Mexico (Figure 1). The Texas coast is 563 km in length
and contains five barrier islands that stretch approximately
161 km. There are six consistently open pathways for water
exchange and animal transport between adult and nursery habi-
tat in the nearshore bays and the Gulf of Mexico (http://goliath.
cbi.tamucc.edu/TexasInletsOnline/TIO%20Main/index.htm).

Data collection.—Data were provided courtesy of the Texas
Parks and Wildlife Department (TPWD) and were collected as
part of their Resource and Sport Harvest Monitoring Program
targeting juvenile finfish and shellfish. Sampling has occurred
since 1977 for juveniles in nine bays along the Texas coast
(1977–2007, n = 18,078; Figure 1). All sampling followed
protocols detailed in the Marine Resource Monitoring Oper-
ations Manual (Martinez-Andrade et al. 2009). Juvenile South-
ern Flounder (age < 2 years, 11–290 mm TL; Stokes 1977;
Etzold and Christmas 1979; Stunz et al. 2000) were sampled
monthly using a randomized, stratified sampling design along
the shoreline of each bay with 18.3 × 1.8-m bag seines. The
bag seines used in this study were designed to sample juve-
nile estuarine fish populations (Martinez-Andrade 2009). While
formal gear selection studies were not performed, previous stud-
ies on this species have shown this to be an effective gear for
sampling juvenile Southern Flounder (Nañez-James et al. 2009;
Froeschke et al., in press). Bag seines were deployed perpen-
dicular to the shoreline and were carried parallel to shore for
15.2 m. Twenty bag seines were deployed each month in Sabine
Lake, Galveston Bay, West Matagorda Bay, San Antonio Bay,
Aransas Bay, Corpus Christi Bay, upper Laguna Madre, and
lower Laguna Madre, and 10 bag seines were deployed each
month in East Matagorda Bay. Months with high abundance of
juvenile recruitment (January–May) were used in the models
(Nañez-James et al. 2009; Froeschke et al. 2011).

Patterns of eight environmental variables relevant to fish
were examined coast-wide to investigate relationships be-
tween environmental conditions and juvenile Southern Flounder
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PREDICTIVE MODELS FOR JUVENILE SOUTHERN FLOUNDER 819

FIGURE 1. Bag seine sampling locations (circles, n = 18,078) for the TPWD Resource and Sport Harvest Monitoring Program from January through May
1979–2007 (each site was sampled once over the course of the study).
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820 FROESCHKE ET AL.

FIGURE 2. Input factors for boosted regression trees and artificial neural
networks to identify probability of presence for juvenile Southern Flounder
along the Texas coast.

distributions (Figure 2). Salinity (psu), temperature (◦C), tur-
bidity (NTU), and dissolved oxygen (mg O2/L) were collected
in the surface waters (0–15 cm) for each sampling event. Tur-
bidity readings were processed in the laboratory within 24 h
using a calibrated turbidimeter. Water depth, sampling time,
and location were also recorded for each sample. All variables
were measured during each sampling (i.e., all years and bays).
The increase of variance estimates of the estimated regression
coefficient for each variable from collinearity was tested using
the variance inflation factor (VIF; Table 1).

To examine potential relationships between the distribution
of juvenile Southern Flounder and connection to the Gulf of
Mexico, distance from each sampling location to the nearest
tidal connection to the Gulf of Mexico (Figure 1) was calculated
using the cost–distance function in the ArcGIS software package
with the spatial analyst extension (ESRI), using the shoreline as
a barrier (Whaley et al. 2007; Froeschke et al. 2010; Froeschke
and Froeschke 2011). The cost–distance function calculates the
shortest distance between two points while accounting for ge-
ographic boundaries (i.e., land) to provide more accurate rela-
tive distance estimates than Euclidian (straight-line) techniques
(Froeschke et al. 2010; Froeschke and Froeschke 2011). For
Corpus Christi Bay, two distance matrices were calculated. One

TABLE 1. Variance inflation factors (VIF) of the variables included in the
boosted regression trees and artificial neural network models indicated no
collinearity of the variables.

Variables VIF

Year 1.0515092
Month 2.8223845
Salinity (psu) 1.2764295
Temperature (◦C) 2.8601381
Dissolved oxygen (mg O2/L) 1.2642134
Turbidity (NTU) 1.0531671
Depth (m) 1.1686556
Distance to the inlet (cost-distance units) 1.0250715

distance matrix was developed without the Packery Channel in-
let and applied to all samples collected before the opening of
this channel. A second matrix was calculated including Packery
Channel and the distance estimates were applied to all sampling
events after June 2005.

Boosted regression trees.—Relationships of juvenile South-
ern Flounder with physical, spatial, and temporal variables were
determined using a forward fit, stage-wise, binomial BRT model
(De’ath 2007). Analyses were conducted in R (version 2.9; R
Development Core Team 2009) using the ‘gbm’ library supple-
mented with functions from Elith et al. (2008). The adjustable
model parameters for BRT are tree complexity (tc), learning rate
(lr), and bag fraction (bf ), where tc controls whether interactions
are fitted, lr weights the contribution of each tree to the growing
model, and bf specifies the proportion of data selected at each
step (Elith et al. 2008). The model was fit to allow interactions
using a tree complexity that had a value of 5 and a learning rate
of 0.01 to minimize predictive deviance and maximize predic-
tive performance. Tenfold cross validation of training data (n =
12,651) was used to determine the optimal number of trees.

The BRT technique is an ensemble method and is a combi-
nation of techniques between statistical and machine learning
traditions that has the power to (1) accept different types of pre-
dictor variables, (2) accommodate missing values through the
use of surrogates, (3) resist effects of outliers, and 4) fit inter-
actions between predictors (Elith et al. 2006, 2008; Leathwick
et al. 2006, 2008). This is a relatively new method to address
ecological questions but can be effective to identify relationships
between fish distribution patterns and environmental predictors
(Leathwick et al. 2006, 2008; Froeschke et al. 2010; Froeschke
and Froeschke 2011).

Unlike traditional regression techniques, BRT combines the
strength of two algorithms, regression trees and boosting, to
combine large numbers of relatively simple tree models instead
of a single “best” model (Elith et al. 2006, 2008; Leathwick
et al. 2006, 2008). Each individual model consists of a simple
regression tree assembled by a rule-based classifier that par-
titions observations into groups having similar values for the
response variable based on a series of binary splits constructed
from predictor variables (Friedman 2001; Leathwick et al. 2006;
Elith et al. 2008). The BRTs often have a higher predictive per-
formance than single tree methods due to the inherent strengths
of regression trees and the robustness of model averaging that
improves predictive performance. While overfitting can occur,
this is minimized by incorporating 10-fold cross validation into
the model-fitting process (Elith et al. 2006, 2008; Leathwick
et al. 2006, 2008).

Artificial neural network.—A sigmoidal–sigmoidal, mul-
tilayer feed-forward ANN model with back-propagation
Levenberg–Marquardt learning algorithm was used to predict
the presence and absence of juvenile Southern Flounder along
the Texas coast. The model used the same eight predictor vari-
ables as the BRT model (Figure 3), one hidden layer with four
hidden neurons, and the output layer with the presence and ab-
sence of Southern Flounder as the target (n = 12,651; Figure 3).
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PREDICTIVE MODELS FOR JUVENILE SOUTHERN FLOUNDER 821

FIGURE 3. Input factors for the sigmoidal–sigmoidal, multilayer, feed-forward artificial neural network model with back-propagation learning algorithm,
consisting of eight inputs, one hidden layer, four hidden neurons, and one output layer.

The number of hidden neurons was determined by comparing
areas under the curve (AUCs) for each receiver operating char-
acteristic (ROC) curve while varying the number of hidden neu-
rons, and a validation, training, and testing set was used to avoid
overfitting. Analyses were conducted using the nprtool package
in MATLAB (2010b, The MathWorks, Natick, Massachusetts).

Artificial intelligence neural network models do not have
assumptions of linearity, normality, or homogeneity (Campbell
et al. 2007), can model multivariate and nonlinear data with dis-
continuous regions, and do not require transformation of data
(Suryanarayana et al. 2008). Therefore, an ANN model provides
an appropriate technique to approximate nonlinear relationships
and has been suggested as one of the best choices for model-
ing spatiotemporal patterns of fish (Suryanarayana et al. 2008).
Artificial neural networks consist of neurons (processing units)
with weights and biases (parameters) fitted by training a model
over a portion of the data set. The result is a model that maps a
set of given values (inputs) to an associated set of targets (out-
put; Salia 2005; Zuur et al. 2007). Model weights are trained by
passing through a pair set of inputs and outputs and adjusting
progressively to the weights to minimize the error between the
answer predicted by the ANN and the true answer provided in
the training set (Zuur et al. 2007). All inputs are individually
weighted and combined prior to being transformed in a hidden
layer (consisting of a variable number of neurons) that performs
a nonlinear transformation of the derived linear value (Zuur
et al. 2007). Values of predictor variables varied widely and the
sigmoid function of the neural network was used as it is more
resistant to the effects of extreme values than regression-based
models (Campbell et al. 2007).

Model selection.—Prior to model fitting, data (n = 18,078)
were randomly split into training (70%, n = 12,651) and inde-
pendent testing sets (30%, n = 5,427). Model performance and
comparison of BRT and ANN models was assessed for predic-

tions computed for the independent testing set. For each model,
AUC calculated from the ROC performance metric was deter-
mined (Wilks 2006). To identify spatial patterns of recruitment
the probability of capture was predicted for the study area using
a form of logistic regression based on the fitted BRT and ANN
models (Elith et al. 2008). Predictions were computed based
on the probability that a species occurs (y = 1) at a location
with covariates X and P(y = 1|X) using the logit : logit[P(y =
1|X)] = f (X) scale. Suites of environmental conditions were
developed for each month (January–May) based on environ-
mental variables measured during each month included in the
analysis using ordinary kriging (Saveliev et al. 2007). The BRT
and ANN model outputs were then used to predict probability
of capture coastwide during these specific seasonal conditions.
To evaluate the performance of the mapped probability of
occurrence for each model (ANN and BRT), probability of
occurrence at each sampling location was compared with the
independent testing data set (i.e., not used in model building).

RESULTS

Physicochemical Conditions
Southern Flounder were captured in 1,255 of 12,651 samples

(frequency of occurrence = 10%) from January to May in the
training data set and in 550 of 5,427 samples in the independent
(testing) data set. On the Texas coast, physical conditions
varied widely among bay systems. Salinity increased with
decreasing latitude from hyposaline positive (Sabine Lake and
Galveston Bay) to moderate (15–35 psu) along the central
coast, and hypersaline negative estuaries (>35 psu) in the
southernmost upper and lower Laguna Madre. Over the course
of the study salinity ranged from 0 to 64 psu (mean = 21 psu).
Mean sea surface temperature also increased slightly from
north to south along the coast, and water temperatures ranged
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822 FROESCHKE ET AL.

FIGURE 4. Receiver operating characteristic curve obtained from the trained
boosted regression tree (BRT) model (AUC = 0.828) and trained artificial neural
network (ANN) model (AUC = 0.707) indicating strong predictive power.

from 1.4◦C to 36.5◦C with a mean of 20.9◦C during sampling
events. Dissolved oxygen concentrations (range, 0–28.00 mg
O2/L; mean = 8.21 mg O2/L; Figure 4C), turbidities (range,
0–999 NTU; mean = 33.16 NTU), and sampling depths (range,
0–6.6 m; mean = 0.44 m) were similar among bay systems.

Boosted Regression Trees
The BRT model evaluation suggested good predictive perfor-

mance based on the result predictions to independent data (n =
5,427, AUC = 0.76; Table 2). Evaluation of the training model
also indicated good predictive performance (AUC = 0.83; Fig-
ure 4). The BRT model calibrated over the training set and all
variables provided insight into the relationship between the spa-
tial, physical, and temporal input variables and the distribution
of juvenile Southern Flounder. The variable months (17.5%)
and distance to inlet (16.7%) explained the greatest proportion
of deviance. Probability of occurrence increased from January
to March and declined after March to May. Year of capture
(15.2%) predicted the highest probability of occurrence in the
late 1980s and mid-1990s. Overall, the probability of occurrence

of juvenile Southern Flounder has been decreasing since 1997
(Figure 5). Temperature (14.8%) explained the most deviance of
the physical variables considered, followed by salinity (11.5%),
turbidity (11.5%), dissolved oxygen (7.6%), and depth (5.1%)
(Figure 5). The fitted functions from the BRT model indicated
that the highest occurrence rates of juvenile Southern Flounder
were in March, were closest to the inlet, and had water temper-
ature greater than 10◦C but lower than 20◦C, salinity less than
40 psu, turbidity of around 200 NTU and greater than 300 NTU,
and depth greater than 1 m (Figure 5).

The independent testing set (n = 5,427) was used to ex-
amine spatial predictions for the presence of Southern Floun-
der along the coast. For locations that were sampled multiple
times through the course of the study the mean probability of
occurrence for these sampling events was determined by aver-
aging all data points for the site. The resulting data set used
for the calibration of the spatial prediction model consisted of
n = 3,375 predictions. Spatially explicit models predicted the
probability of capture based on the BRT model output for each
month (January–May) by making predictions of the fitted BRT
model to an interpolated surface of environmental variables.
The spatial model exhibited good predictive performance based
on independent data (AUC = 0.719; Figure 6). Capture prob-
ability increased each month from January to March, declined
slightly in April, and was low during May (Figure 7). Probabil-
ity of capture began increasing first in Galveston Bay and East
Matagorda Bay in February (Figure 7B). In March, probability
of capture was the highest near the tidal inlets from Galve-
ston Bay to Corpus Christi and between Galveston and East
Matagorda Bay (Figure 7C). In April, probability of occurrence
started to slightly decrease between East Matagorda Bay and
Corpus Christi Bay (Figure 7D). Overall, probability of capture
increased within areas with low salinities, cooler temperatures,
and closest to tidal inlets.

Artificial Neural Network
The “best” neural network model based on AUC for

predicting the presence and absence of Southern Flounder
consisted of eight inputs and four hidden neurons (Figure 3).
Model evaluation demonstrated good predictive performance
to independent data (n = 5,427). Furthermore, evaluation of
the training model also exhibited good predictive performance
(mean square error = 0.08, AUC = 0.707; Figure 4).

TABLE 2. Predictive performance of boosted regression tree models for juvenile Southern Flounder; tc = tree complexity, lr = learning rate, bf = bag fraction,
nt = number of trees, ROC = receiver operating characteristic curve.

Area under the receiver operating characteristic
Percentage deviance explained curve (AUC)

Cross Total ROC cross ROC cross-
tc lr bf nt validation Training deviance Independent validation validation SE Train

5 0.01 0.6 1,550 9.70% 19.30% 0.647 0.757 0.735 0.004 0.828
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PREDICTIVE MODELS FOR JUVENILE SOUTHERN FLOUNDER 823

FIGURE 5. Functions fitted for the eight predictor variables by a boosted regression tree (BRT) model relating the probability of capture of juvenile Southern
Flounder to the environment in order to identify the probability of capture along the Texas coast. Y-axes are on the logit scale with mean of zero. Tic marks at
inside top of plots show distribution of data across that variable, in deciles. X-axes parameters: month (1 = January, 2 = February, 3 = March, 4 = April, 5 =
May), distance to the nearest inlet (DI; cost-distance units), year, temperature (temp; ◦C), salinity (psu), turbidity (NTU), dissolved oxygen (DO; mg O2/L), and
depth (m).

Spatially explicit model predictions of probability of capture
from the ANN model were determined for each month (January–
May) by making predictions of the fitted ANN model to the
interpolated surface of environmental variables. The spatial
model showed good predictive performance on the independent
data (AUC = 0.69; Figure 6). Capture probability increased
each month from January to March, declined slightly in April,
and was low during May (Figure 8). Spatial patterns were also
evident. Probability of capture began increasing first in Sabine
Lake, Galveston Bay, and East Matagorda Bay in February
(Figure 8B). In March, probability of capture was the highest
near the tidal inlets (Figure 8C). However, there was a relatively
moderate to high probability of occurrence among all of the bays
(Figure 8C). In April, probability of occurrence started to
slightly decrease between East Matagorda Bay and Corpus
Christi Bay, but remained relatively high in Sabine Lake,
Galveston Bay, and the lower edge of lower Laguna Madre
(Figure 8D). In May, probability of occurrence consisted of
a similar pattern as observed in January but with a moderate
probability of occurrence still prevalent for Sabine Lake and

Galveston Bay (Figure 8E). Overall, probability of capture
increased in areas with low salinities, cooler temperatures, and
areas closest to tidal inlets.

DISCUSSION
Distribution and occurrence rates of juvenile Southern Floun-

der were influenced by temporal, physical, and spatial variables.
Occurrence patterns exhibited strong seasonal variation, and
sampling month was the most influential variable in the BRT
model. This study demonstrated the importance of incorporating
temporal, physical, and spatial variables and their interactions in
species habitat models to identify frequency of occurrence pat-
terns of juvenile Southern Flounder. Probability of occurrence
increased in February and March before a slight decrease in
April and May. Overall, juvenile recruitment patterns observed
were consistent with seasonality of recruitment reported pre-
viously (Froeschke et al. 2011). Peak abundances of juvenile
Southern Flounder have been reported from February to May
with a peak in March along the Texas coast (Froeschke et al.
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824 FROESCHKE ET AL.

FIGURE 6. Receiver operating characteristic curve obtained from the spatial
tested data set against the trained boosted regression tree (BRT) model (AUC =
0.71) and tested artificial neural network (ANN) model (AUC = 0.69) indicating
good predictive power to an independent data set.

2011). Günter (1945) reported Southern Flounder recruitment in
December and from February to April, whereas Stokes (1977)
reported presence of juveniles starting in January with a peak
in February. Simmons and Hoese (1959) reported recruitment
from March to May, peaking in April. Rogers and Herke (1985)
reported recruitment from January to March, and peaks occurred
from February to March.

Distance to the nearest inlet was the second most important
predictor of occurrence with the highest probability of occur-
rence closest to the inlets. Many estuarine species (including
Southern Flounder) spawn offshore and juveniles recruit into
estuaries via tidal inlets. As a result, juvenile abundance is often
greatest near inlets (Whaley et al. 2007; Froeschke et al. 2010).

Essential fish habitat for age-0 Southern Flounder in Aransas
Bay and Copano Bay, Texas, was suggested to occur in high
salinity, vegetated habitats (seagrass and marsh edge) that occur
closest to the tidal inlet between Aransas Bay and the Gulf of
Mexico (Nañez-James et al. 2009). Overall, the current study
considered inlets with a variety of habitat types nearby and sug-
gests that inlet proximity remains an important feature of habitat
quality across biotic habitat types.

Sampling year was the third most important variable demon-
strating increasing probability of occurrence until 1990 and then
a large decline followed by an increase in 1996 before a steady
decline until the end of the study period in 2007. Results are
consistent with reported time-series analysis demonstrating a
long-term decline in recruitment of this species in Texas bays
(Froeschke et al. 2011).

With respect to environmental variables, temperature was the
most important predictor of occurrence, and the highest occur-
rence was observed at temperatures less than 20◦C. These results
indicate temperatures less than 20◦C are optimal for recruitment
of juvenile Southern Flounder. Previous work has shown that
the optimum recruitment temperature range of Southern Floun-
der is 16–16.2◦C (Stokes 1977). However, juvenile Southern
Flounder in Texas bays have been captured in water temper-
atures between 14.5◦C and 21.6◦C (Günter 1945). A study
on juvenile Southern Flounder in the Aransas Bay complex
(Mission–Aransas National Estuarine Research Reserve) in-
dicated the highest probability of occurrence was at temper-
atures less than 15◦C (Froeschke et al., in press). Due to a
preference of cooler temperatures, projected sea temperature
increases are of potential concern for this species. Seawater
temperature is projected to increase by 4◦C in the 21st century
(Thuiller 2007). Both Applebaum et al. (2005) and Fodrie et al.
(2010) have previously reported rising sea temperatures within
the Gulf of Mexico. Additional predicted increases in tempera-
ture could have substantial effects on the temporal and spatial
recruitment patterns and ultimately population size of Southern
Flounder.

FIGURE 7. Spatial prediction of juvenile Southern Flounder from the “best” boosted regression tree (BRT) model indicating the highest probability of collection
would occur in March in Galveston Bay, East Matagorda Bay, and areas closest to the inlets. Spatial predictions from BRT of juvenile Southern Flounder capture
for the months of (A) January, (B) February, (C) March, (D) April, and (E) May. [Figure available in color online.]
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FIGURE 8. Spatial prediction of juvenile Southern Flounder from the “best” artificial neural network (ANN) model indicating the highest probability of collection
would occur in March in Sabine Lake, Galveston Bay, East Matagorda Bay, and areas closest to the inlets. Spatial predictions from ANN of juvenile Southern
Flounder capture for the months of (A) January, (B) February, (C) March, (D) April, and (E) May. [Figure available in color online.]

Salinity was also an important predictor of frequency of
occurrence; Southern Flounder frequency of occurrence was
highest at salinities less than 10 psu and decreased at salinities
greater than 40 psu. Spatial predictions from both the BRT
and ANN models indicated the highest probability of juve-
nile Southern Flounder occurred in Sabine Lake and Galve-
ston Bay and the lowest probability of occurrence was in the
upper and lower Laguna Madre. Along the Texas coast, salin-
ity increases with decreasing latitude from hyposaline positive
(Sabine Lake and Galveston Bay) to moderate (15–35 psu) along
the central coast, and hypersaline negative estuaries (>35 psu)
in the southernmost upper and lower Laguna Madre. South-
ern Flounder are euryhaline (Deubler 1960), but survivorship
and growth rates increase in lower salinity waters (Hickman
1968; Stickney and White 1974). This study supports these pre-
vious findings as Southern Flounder were more prevalent in
the low salinity and cooler water temperature environments of
Sabine Lake and Galveston Bay. This result illuminates poten-
tial ramifications of reduced freshwater inflow into these bay
systems as historic inflows are increasingly diverted for human
use.

Turbidity and dissolved oxygen were less important predic-
tors of occurrence. This is consistent with Froeschke et al. (in
press) who did not find an effect of turbidity on the probability
of occurrence of juvenile Southern Flounder in the Mission–
Aransas National Estuarine Research Reserve. While dissolved
oxygen levels can influence the distribution, abundance, and
diversity of organisms (Breitburg 2002; Vaquer-Sunyer and
Duarte 2008; Montagna and Froeschke 2009), this primarily
occurs at low oxygen levels (i.e., <2 mg O2/L). In this study,
few samples were taken in low dissolved oxygen conditions,
but low dissolved oxygen events (e.g., hypoxia) are increasing
in frequency and spatial extent in Texas estuaries (Applebaum
et al. 2005; Montagna and Froeschke 2009). These data suggest
that oxygen levels influence the distribution and abundance of
Southern Flounder.

Southern Flounder spawning and recruitment success may
be directly influenced by estuarine conditions, highlighting the
importance of high quality habitat necessary to support impor-
tant fishery species. The interaction between habitat quantity
and quality can affect the survivorship of flatfish, in which the
largest recruitment potential occurs in areas with high habitat
quantity and quality and smallest recruitment potential in areas
with low habitat quantity and quality (Gibson 1994). Biological
variables such as prey abundance, predators, habitat structure,
water depth, and physical factors such as temperature, salinity,
dissolved oxygen, and hydrodynamics affect growth and sur-
vival of flatfish (Gibson 1994; Allen and Baltz 1997; Stoner
et al. 2001; Glass et al. 2008).

Both models indicated higher probability of occurrence near
the tidal inlets from Galveston Bay to Corpus Christi and be-
tween Galveston and East Matagorda Bay. Overall, probability
of capture for both models increased with decreasing salinities,
cooler temperatures, and proximity to tidal inlets. Although
overall accuracy of the ANN model was slightly lower than
the BRT spatially tested model, the ANN correctly predicted
a higher probability of occurrence in Sabine Lake whereas the
BRT did not. Based on the biology of the species, we suggest that
the high probability of occurrence in Sabine Lake is accurate.
Moreover, BRT and ANN models both displayed good predic-
tive performance of spatial predictions to an independent data
set. The ANN consisted of a similar number of observed and
predicted occurrences than did the BRT. However, the BRT had
a higher predictive performance for the training set compared
with the ANN model and a higher percentage correct for the pre-
diction of presence–absence of juvenile Southern Flounder. The
ANN and BRT models were similar with regard to the number
of observed and predicted fish. The primary difference between
the overall percentage correct between the two models for the
training and testing sets was the number of fish predicted and
not observed, suggesting that the ANN model and possibly the
BRT could be overfitting, a common feature of correlation-based
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predictive models including ANN (Zuur et al. 2007). Despite
this limitation, ANN remains a powerful tool for prediction and
often outperforms other methods (Suryanarayana et al. 2008).
These results also suggest the need to evaluate a variety of po-
tential methods to identify the most robust modeling approach
for a particular application, which is difficult or impossible to
identify a priori given the complexity of large multivariate data
sets typically used to guide management of natural resources.

Mapped distribution patterns permit rapid identification and
delineation of important areas in a spatiotemporal context,
which is essential for ecosystem based management approaches
(Pikitch et al. 2004). Predicted distribution patterns were very
similar between the spatiotemporal models. For both models,
capture probability increased each month from January to
March and declined slightly starting in April. Salinity levels in
Sabine Lake are the lowest among the Texas bays, suggesting
that the high predicted frequency of occurrence determined
from the ANN is consistent with salinity preference seen
among juvenile Southern Flounder (Hickman 1968; Stickney
and White 1974; Froeschke et al., in press).

Despite the utility of our modeling approaches, there are
some limitations to both methodologies. While model evalu-
ation indicated good performance of both the BRT and ANN
at predicting the independent testing cases, substantial unex-
plained deviance remained in the models. This suggests that
some important variables in the habitat usage of these species
were available in the study data set. For example, biotic compo-
nents such as spawning location, prey and predator density, and
movement patterns of individuals were not considered in this
study. The methods used in this study allowed the consideration
of several variables simultaneously and provided timely infor-
mation for conservation and management of Southern Flounder.
Spatially explicit models permit applications that are not feasible
with other approaches (e.g., prediction of distribution patterns
related to dynamic environmental patterns).

Construction of spatiotemporal models for juvenile Southern
Flounder along the Texas coast addresses state and national es-
tuarine and coastal resource management issues because it pro-
vides information on the spatial distribution and nursery habitat
requirements for this fishery species. Our results provide tools
for fisheries managers to promote sustainability of the Southern
Flounder fishery. For example, the effect of increased salinity
due to changes in precipitation or urban water diversion could
be evaluated in this context as grids of environmental conditions
were developed for predictive purposes. A range of scenarios
could be explored and the change in occurrence or distribution
of Southern Flounder could be evaluated. This study provides
a predictive framework for proactive approaches to ecosystem
management where the effects on environmental conditions on
a population can be considered and incorporated into harvest
strategies. Hidalgo et al. (2011) demonstrated that stock deple-
tion can enhance the impact on environmental forcing on fish
populations. These data suggest that this species is present even
if the best biotic habitat (e.g., seagrass meadow) is available and

if the physical environment (e.g., temperature, salinity) is not
within the tolerable range for that species. Thus, decreases in
freshwater inflow could have a major impact on the distribution
of juvenile Southern Flounder. The modeling approaches em-
ployed in this study provide a predictive framework from which
changes in environmental conditions or management measures
could be evaluated to promote development of sustainable man-
agement strategies for Southern Flounder in Texas.
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