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This research was motivated by the desire to more efficiently estimate
catch by recreational anglers than current methods do. The method illus-
trated here combines data from angler self-reports made by a smartphone
app and dockside validation samples. The two data sources can be thought
of as a capture and recapture, where the parameter of interest is the popula-
tion total (catch) instead of the population size. We developed several esti-
mators of the total and compared them to one that makes use only of catch
observed in the validation sample but not self-reports of catch. All the pro-
posed estimators allow measurement error in the self-reports and do not
make any assumptions about their representativeness. The validation sam-
ple must be a probability sample for valid inference, and our estimators can
accommodate a complex sample design. We provide recommendations
about conditions under which one of the estimators discussed may be pre-
ferred to another. Finally, we illustrate the method with analysis of data
from a pilot project to estimate recreational red snapper catch in the Gulf of
Mexico off the coast of Texas.

1. INTRODUCTION

The catch of recreational anglers is more difficult for fisheries managers to
estimate than that of commercial operations. The reasons include both wider
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dispersal and less regulatory requirements for participants. Management of rec-
reational fisheries in the United States is the responsibility of the National
Oceanic and Atmospheric Administration (NOAA). NOAA’s Marine
Recreational Information Program (MRIP) produces estimates of recreational
catch by species every two months. MRIP’s usual estimator is the product of
estimators from two complementary surveys of anglers, one by phone or mail
to measure “effort” (number of trips) and one face to face at the dockside to
measure mean catch per trip. Improvements to the designs of these surveys
have been underway for about a decade, guided by input from a National
Research Council report (National Research Council 2006). Recently, how-
ever, some stakeholders have proposed using angler self-reports to supplement,
or perhaps even to replace, other data sources for estimating catch. Self-
reporting has become increasingly simple and inexpensive, with the increasing
penetration and ease of use of smartphones. The purpose of this paper is to
present methodology that will allow direct use of this self-reported data for
estimating recreational catch. The proposed estimators combine data from the
nonprobability sample of self-reports with that from the dockside probability
sample to produce scientifically defensible estimates of recreational catch. Our
analysis shows that if angler self-reporting is sufficiently complete and accu-
rate, these new data can make the effort survey unnecessary. This could save
money and allow for more timely production of estimates. Thus our methodol-
ogy is an example of Groves’ prediction: “The combination of designed data
with organic data is the ticket to the future” (Groves 2011).

Pilot projects in Alabama, Mississippi, and Texas are testing this approach
for estimating red snapper catch. Red snapper is a favorite target of recreational
anglers in the Gulf of Mexico, and one of its most economically valuable spe-
cies. Scientists are concerned that the Deepwater Horizon oil spill has affected
the health of this long-lived species (Tarnecki and Patterson III 2015) and
slowed its recovery from overfishing. To manage the species properly, accurate
and timely estimates of catch are needed. Thus, projects seeking to improve
the precision and timeliness of data collection for red snapper have been
funded by both NOAA and the Gulf Environmental Benefit Fund (GEBF),
which distributes funds for mitigation of damages from the spill. The three
state projects all combine their traditional dockside survey data with data from
reports that anglers make via computer or via smartphone apps known as
Snapper Check, Tails ’n Scales, and iSnapper in Alabama, Mississippi, and
Texas, respectively. In all three states, anglers are requested to report their
catch using their device before they remove the fish from the boat. In Alabama
and Mississippi, reporting is mandatory and enforced by fines if the angler fails
to comply, while in Texas it is voluntary. Anglers are also incentivized to pro-
vide their data by allowing them to access records of their own angling activ-
ities maintained by the system.

Survey researchers recently have shown interest in methods for making stat-
istical inferences using data from nonprobability samples (Baker, Brick, Bates,
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Battaglia, Couper, et al. 2013). The most common approaches involve weight-
ing, using various methods to produce weights reflecting the number of popula-
tion members each sample member “represents.” One method for doing this is
to estimate by modeling a pseudo-probability of selection, which typically relies
on knowledge of common auxiliary information in the sample and the popula-
tion to which inference will be made. The population information can come
from summaries of the entire population (such as from Census data) or from a
valid probability (reference) sample. Pseudo-probability estimation methods
include ones first developed for reducing coverage and nonresponse biases in
probability samples, such as calibration (e.g., poststratification) and propensity
score adjustments (Lee and Valliant 2009). The bias reduction from these meth-
ods depends on availability of auxiliary information that is highly correlated
with response variables and on an assumption that the units in the sample are
representative of those not present within analyst-defined classes. These meth-
ods have shown mixed results (Tourangeau, Conrad, and Couper 2013).

Though our data do include a reference sample containing auxiliary data in
common with the nonprobability sample, we take a different approach. Both
our probability and nonprobability samples contain measures of catch, but
the ones from the nonprobability sample are considered less accurate than
those reported by dockside samplers. Thus our proposed estimators are based
on the probability sample data and use information about reported catch from
the nonprobability sample only as auxiliary data. In fact, all the estimators we
propose are either ratio estimators themselves or modifications of ratio estima-
tors. Thus neither correction of the nonprobability sample by weighting nor
assumptions about its representativeness are required for validity.

An alternative way to view our data collection and methodology is as a gen-
eralization of a Capture-Recapture experiment. This point of view provides an
intuitive explanation for fisheries scientists who are typically more familiar
with this methodology and the assumptions it requires than with ratio estima-
tion. In a Capture-Recapture experiment, n1 fish are caught, marked, and
released. These fish are not required to be a probability sample of fish. Then a
second sample of n2 fish is captured, and m of them are noted as previously
marked. This sample is required to be selected in such a way that all fish
(including marked and unmarked) are equally likely to be included. These data
can be used to produce an estimator of the unknown population size N by
equating the fraction of marked fish in the population and sample:

n1

N
¼ m

n2
:

This yields the classical estimator, called the Lincoln-Petersen index, due to
the pioneering work of two ecologists (Le Cren 1965):

N̂ ¼ n1n2

m
: (1)
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Unlike the goal of the usual Capture-Recapture experiment, our goal is to esti-
mate the total ty of an attribute y (catch) over a population (angler trips), whose
size N is unknown. We examine several estimators that generalize the approach
of the Lincoln-Petersen index for this purpose. In our application, the sample of
self-reports in each of the three red snapper programs plays the role of the capture
sample. The dockside sample is viewed as the recapture sample. This validation
sample has a complex probability sample design in each of the three programs.
The frame of each consists of gulf access points crossed with time blocks, such
as four- or six-hour time shifts, so that the sample includes clusters of trips ending
at the sampled access point and shift. The clusters are selected into the samples
with probabilities that vary, with active fishing times/places more likely to be
selected than those with less activity. The catch for all trips sampled is observed
and counted by agency personnel. The Lincoln-Petersen Index is based on an
assumption that recaptures are a simple random sample of the population, so an
adaptation is necessary for valid estimation when the recapture sample design is
complex, as ours is. There have been previous applications of the usual Capture-
Recapture methodology to estimate N where one or both of the samples are con-
sidered to have features of a complex design and weighting is used (Wolter
1986; Alho, Mulry, Wurdeman, and Kim 1993). We adopt a similar approach
for our new estimators of total for a population of unknown size.

Pollock, Turner, and Brown (1994) previously considered the problem of
estimating a total over a population of unknown size. This application differed
from ours in that y was observable only for the units selected in the second sam-
ple; that is, there were no angler self-reports of catch for those n1 trips that were
included in the capture sample. They proposed as an estimator of total catch

t̂yp ¼ N̂�̂y; (2)

with N̂ defined in (1) and �̂y as the sample average of the ys from the n2 recaptured
units. In our application, the self-reported catch is also available from the capture
sample, so it seems reasonable to expect that this information should improve esti-
mation if angler compliance and accuracy are high. Our application also differs
from Pollock’s scenario in that the validation sample is selected according to a
complex design, so that generalizations of expressions (1) and (2) are needed.

In section 2, we introduce three new estimators that use the self-reported
data together with that from the validation samples to estimate catch. We
develop expressions of the large sample variances of the estimators under a
simple random sample (SRS) design for the validation sample. In section 3, we
compare these variances with each other and with that of t̂yp under various
assumptions about the self-reports. Specifically we consider cases in which
reported catch is subject to measurement error, when reporters are not repre-
sentative but rather are those with extremely high or low catch, and for a range
of reporting rates. Section 4 examines estimator performance from simulation
studies that are designed to examine the small sample bias of the estimators, as
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well as the effects of a complex design for the validation sample. One of the
simulation settings we use is designed to mimic some features of the data from
the Texas iSnapper program. Then we illustrate the method with estimates of
red snapper from these data. Discussion follows in section 6.

2. ESTIMATORS OF POPULATION TOTALS USING
CAPTURE-RECAPTURE METHODS

Let d1 denote the subset of the N population units that self-report their trip and
catch. d1 is not assumed to be representative of the population, nor is it a prob-
ability sample, but rather is regarded as a domain. Each of the n1 domain units
reports a value for y, but the ith unit’s report is denoted by y�i to distinguish it
from the truth, yi. No assumptions are made about the relationship between y
and y*. A validation sample s2 is selected according to a probability design,
and yi is observed for each unit in s2. A subset of s2 will match self-
reported trips; these units have both y and y* available. The goal is to
estimate ty ¼

PN
i¼1 yi using the data from d1 and s2.

The population and sample data can be visualized as shown in Figure 1. The
first row represents the reporting domain d1 and includes the trips with y*
available, while the second row contains trips without y*. The first column
contains trips in the validation sample, for which y is available; the second col-
umn contains the trips without observable y. The upper left cell represents the
m matched units with observable y and y*; the upper right cell represents the
n1 � m reported (y* known) but unvalidated trips; the lower left cell represents
the n2 � m validated (y known) but unreported trips. The lower right cell con-
tains units with no data available to the analyst.

We denote the reporting rate, defined as the fraction of trips reported by
anglers, as

Figure 1. An Illustration of the Population and Sample Data.
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p1 ¼ n1=N; (3)

and the population mean as �y ¼ ty=N: Then Pollock’s estimator (2) can be gen-
eralized for a complex design to

t̂yp ¼
n1

p̂1
�̂y ¼ n1

t̂y

n̂1
; (4)

where the ri
0s are reporting indicators (ri¼ 1 if the ith unit is included in d1; 0

otherwise); the wi
0s are sampling weights for units in s2; n̂1 ¼

P
i2s2

wiri;
p̂1 ¼ ð

P
i2s2

wiri=
P

i2s2
wiÞ; and �̂y ¼ ð

P
i2s2

wiyi=
P

i2s2
wiÞ. Thus t̂yp is rec-

ognizable as a ratio estimator with auxiliary variable ri and ratio

Bp ¼ ty=n1:

Now we propose a new estimator that is also a ratio estimator, but with aux-
iliary variable riy�i and ratio denoted by

Bc ¼ ty=
XN

i¼1

riy
�
i ¼ ty=ty�;

where ty� ¼
P

i2d1
y�i ¼

PN
i¼1

riy�i is the total reported catch. This yields the
estimator

t̂yc ¼ ty�

P
i2s2

wiyiP
i2s2

wiriy�i
¼ ty�

t̂y

t̂y�
: (5)

This estimator can be regarded as the total reported catch inflated by the esti-
mated reporting rate ð

P
i2s2

wiriyi=
P

i2s2
wiyiÞ, and adjusted for reporting

errors by a multiplicative correction factor ð
P

i2s2
wiriyi=

P
i2s2

wiriy�i Þ. It is a
generalization of the Capture-Recapture estimator, where totals of y and y*
replace counts of units in the two data collection periods.

If y* is accurate and the reporting rate is high, t̂yc would be expected to be
more precise than t̂yp due to its highly correlated auxiliary information. If
reporting is inaccurate and rare, the reverse would be true. To avoid making
the choice of estimator in advance, one could form a linear combination of the
two estimators, with weights chosen to minimize variance. This estimator is a
special case of what Olkin (1958) called the multivariate ratio estimator, which
we denote as

t̂MR ¼ ð1�W Þ̂typ þWt̂yc: (6)

Olkin (1958) showed (eq. 3.1, p. 157) that the optimal weight W for a simple
random sample (SRS) can be approximated to order Oð1=nÞ by
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wSRS ¼
S2

dp � Sdp;dc

S2
dp þ S2

dc � 2Sdp;dc
; (7)

where S2
dp; S

2
dc; and Sdp;dc denote the variances and covariance of the residuals

from the ratio models.
In our application, these residuals are dpi ¼ yi � Bpri and dci ¼ yi � Bcriy�i ,

and their variances and covariances can be expressed as shown in the Appendix
in (A.2), (A.3), and (A.4). Using these expressions, (7) simplifies to

wSRS ¼
ty�

ty

S1;yy�

S2
1y�
¼ ty�

ty

S1y

S1y�
R1;yy�; (8)

where R1;yy� ; S1;yy� ; S1y, and S1y� are the correlation, covariance, and standard
deviations of y and y* in the reporting domain d1. Thus the optimal estimator
gives t̂yc the majority of weight (wSRS > 1=2) when

R1;yy� >
CV1y

2p1CV1y�
;

where p1 is the reporting rate (from (3)), and CV1y and CV1y� are the coeffi-
cients of variation of y and y* in the reporting domain.

In practice, wSRS must be estimated in order to use t̂MR. We consider two esti-
mators. For the first, we replace the components of (8) with estimators calculated
from the observed data, as suggested in Olkin (1958). One such estimator is

ŵSRS;1 ¼
ty�

t̂yc

s1;yy�

s2
1y�

;

where s2
1y� and s1;yy� are the estimated variance and covariance between y and

y* in the reporting domain, made from the matched sample. (Alternatively,
one could use t̂yp or implicitly define an estimator by substituting t̂MR for ty in
(6), or use the observable value of S2

1y� in the denominator of ŵSRS;1:
Simulation showed little difference in performance among these alternatives.)
We denote the resulting estimator by t̂y1: The second estimator we consider is
simpler and near optimal when reporting errors are small. Note from (8) that
when y ¼ y�; wSRS ¼ ty�=ty: Thus we estimate wSRS by

ŵSRS;2 ¼
ty�

t̂yc
:

The resulting estimator can be simplified to

t̂y2 ¼ ty� þ
n1

n̂1
t̂y � t̂y�

�
¼ ty� þ n1

�̂d;
�

(9)

where di ¼ yi � riy�i and �d ¼ ðty � ty� Þ=n1 is the total population underreport
averaged over reporters. In contrast to t̂yc, this estimator augments the reported
catch by an additive rather than a multiplicative component.
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When the validation sample has a complex design, it can be accounted for
in t̂yp and t̂yc as shown in (4) and (5), and these estimators combined as in (6).
Olkin (1958) generalized (7) to produce an appropriate expression for W when
the sample has a stratified design. For a general complex design, however, it is
useful to note that the optimal value for W is

W ¼ V ð̂typÞ � Covð̂typ; t̂ycÞ
V ð̂typÞ þ V ð̂tycÞ � 2Covð̂typ; t̂ycÞ

; (10)

which reduces to Olkin’s expressions for SRS and stratified designs when
Taylor series variance approximations are used. Modern survey software can
provide estimates of the variances and covariance for most designs, so that
explicit expressions are not needed for each design type. The optimal W will
not be well approximated by (7) if design effects for the two estimators differ
greatly. Then the simplified forms shown in ŵSRS;1 and ŵSRS;2 and the resulting
estimators will no longer be nearly optimal.

In section 3, we focus only on SRS designs. We compare the variances of
the estimators to help us understand their relative performance as the complete-
ness, representativeness, and accuracy of reporting change. The goal is to pro-
vide guidance on which estimator may be best for different applications. In
section 4, we extend the comparison to complex designs via simulation.

3. COMPARISON OF ESTIMATORS FOR SIMPLE
RANDOM SAMPLES

We compare the approximate variances of t̂yp; t̂yc, and t̂y2, to that of t̂MR under
an SRS design for the validation sample and for a range of scenarios for the
quality and completeness of the self-reported catch information. We do not
consider t̂y1 separately since its large sample behavior is that of t̂MR: The ratios
of the variance expressions in (A.9) through (A.12) are unaffected by the size
of the validation sample n2, the population size N, or the total itself, ty. They do
depend on the reporting rate p1, the correlation and CV’s of y and y* in the
reporting domain (R1;yy� ; CV1y, and CV1y�), and the ratios of the means of y
and y� in the reporting domain to y’s mean in the population (�y1=�y and �y�1=�y).
Therefore, we present comparisons of the variances of the three estimators to
that of t̂MR for the following three scenarios: (1) no errors in reporting and
reporters are representative of the population; (2) errors in reporting, but
reporters are representative of the population; and (3) no errors in reporting,
but reporters are not representative of the population. We examine the loss of
precision for t̂yp; t̂yc, and t̂y2, as compared to t̂MR:

In scenario 1, we assume that y¼ y* (R1;yy� ¼ 1; �y1 ¼ �y�1, and CV1y ¼ CV1y� )
and reporters are representative of the population (defined to mean that �y1 ¼ �y
and CV1y¼CVyÞ: This will occur on average if reporting is “at random,” though
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randomness is not required for representativeness. Figure 2 displays the ratio of
the large sample variance of t̂MR to that of each estimator as a function of report-
ing rate p1, defined in (3). Panels (A) and (B) show how CVy (set to 0.32 and
0.55) affects performance. When CVy¼ 0, t̂yp and t̂yc are equivalent. When CVy

> 0; t̂yp is more efficient than t̂yc for small reporting rate but grows less efficient
as p1 increases. The crossover point occurs at p1 ¼ 1=2 regardless of CVy, but
the advantage for t̂yc grows with CVy: t̂y2 is uniformly optimal in this case since
y¼ y*.

Next we examine the performance of the estimators when self-reports are
not accurate (y 6¼ y�), but reporters are representative (�y1 ¼ �y and
CV1y ¼ CVy). t̂yp is unaffected by measurement error since it does not use y*.
(A.11) shows that errors increase the variance of t̂MR by decreasing R1;yy� ,
while (A.10) shows that they affect the performance of t̂yc through both R1;yy�

and CV1y� : Since CV1y� can either increase or decrease when y 6¼ y�, the effect
of measurement error on the variance of t̂yc is not clear. Finally, (A.12) shows
that the variance of t̂y2 is affected by errors through R1;yy� ; CV1y� , and �y�1=�y.
Thus we compared the estimators under two measurement error models that
impact these parameters differently: the classical measurement error (CME)
(Carroll et al. 2006, section 1.2) and the Berkson model (Berkson 1950).

The CME model specifies

y� ¼ yþ e; (11)

where e � ð0; aS2
yÞ; S2

y ¼
PN

i¼1 ðyi � �yÞ2=ðN � 1Þ is the variance of y in the
finite population, y and e independent. When (11) holds, R1;yy� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

;
CV1y� ¼ CV1y

ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

, and �y�1=�y ¼ �y1=�y: The Berkson model reverses the role
of y and y� and specifies
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Figure 2. Relative Precision of Three Estimators to t̂MR as a Function of p1, When
There are No Errors, and Representative Reporting. (A) Variance ratios when
CVy50:32. (B) Variance ratios when CVy50:55.
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y ¼ y� þ e; (12)

with e � ð0; bS2
y� Þ; y� and e independent. A Berkson error model is plausible

in our application if the trip reporter provides the catch value as the bag limit
(maximum legal catch) * # of anglers aboard as an estimation strategy. Under
(12), the domain parameters would be R1;yy� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ b
p

and �y�1=�y ¼ �y1=�y.
Berkson error causes CV1y� to decrease; CV1y� ¼ CV1y=

ffiffiffiffiffiffiffiffiffiffiffi
1þ b
p

.
Figure 3 shows the variance ratios of t̂MR to t̂yp; t̂yc; and t̂y2 as functions of

R1;yy� , where CVy¼ 0.32 and p1 ¼ 0:7. The two panels show how their per-
formance changes when the measurement error structure differs; CME is
assumed for panel (A) and Berkson error for panel (B). Recall from Figure 2A
that t̂yc and t̂y2 outperform t̂yp for these settings when y¼ y*. Figure 3A shows
that this advantage is lost when CME afflicts y*, unless the correlation between
y and y* is substantial (about 0.7 for t̂y2 and 0.84 for t̂yc). When y* has
Berkson error, the relative performance returns to its no-error order. Berkson
error does not increase the variance of t̂yc and t̂y2 as much as CME does for the
same correlation, while both models affect the variance of t̂MR equally. In fact,
the large sample variance of t̂y2 is identical to that of the optimal estimator in
this case, even though errors occur. The point here is that the structure of the
measurement error matters for determining which estimator is best, and the
preference depends on more than R1;yy� .

Finally, we again assume that y¼ y*, but reporters are not representative.
Then the mean and/or variance of y are different for reporters than for the pop-
ulation, affecting estimator variances through �y1=�y and CV1y. To see how
much, we must specify a mechanism for determining who reports. We exam-
ined two extremes: that reporters have the largest or smallest catch; that is,
reporters are assumed to be those in the top (bottom) 100p1% of y’s
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Figure 3. Ratio of Variance of t̂MR to the Three Estimators as a Function of R1yy� ,
When p150:7, and Reporters are Representative. (A) Classical measurement error
model for y*. (B) Berkson measurement model for y*.
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distribution. The effect of these mechanisms on �y1=�y and CV1y depends on the
distribution of y.

We considered two distributions for y, one continuous (zero-truncated nor-
mal) and one discrete (zero-truncated Poisson). When y is normal, the distribu-
tion of y in the high catch reporting domain is that of an upper tail truncated
normal, with truncation point A ¼ �yþ SyU

�1ðð1� p1Þð1� Uð��y=SyÞÞ; where
U is the standard normal CDF. The low catch domain was defined similarly.
Thus the moments of y in the reporting domain are easily calculated (e.g.,
Johnson and Kotz 1970, pp. 81–3). When y is zero-truncated Poisson, its distri-
bution in the reporting domain is also truncated Poisson, but at a value larger
than 0. The moments of the k-truncated Poisson are also easily calculated
(Johnson and Kotz 1970). Because of the discreteness of this distribution, only
some values of p1 are possible for this model.

Figure 4 shows the variance ratios as functions of p1 when the domain con-
tains high removal reporters, where panel (A) shows results for truncated nor-
mal y (with CVy¼ 0.32) and panel (B) for truncated Poisson y (with k ¼ 1:79;
which yields CVy � 0:55Þ. Thus the differences in Figure 2 and Figure 4 illus-
trate the impact of nonrepresentative reporting only. A comparison shows that
high-removal nonrepresentative reporting improves the relative performance
of t̂yc, especially for small p1. t̂yp alone declines in performance compared to
the best estimator as the reporting rate increases.

Table 1 is designed to show how much nonrepresentative reporting affects
the absolute and not just the relative variance of the estimators under largest
and smallest catch reporting. It displays the ratio of each estimator’s variance
when reporters are representative and when they are not (larger for the upper
and smaller for the lower half of the table) for normal y and two reporting rates:

Reporting rate  p1

V
ar

ia
nc

e 
ra

tio

t̂ y2

t̂ yp

t̂ yc0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.01 0.30 0.50 0.70 0.900.10 0.99

Reporting rate  p1

V
ar

ia
nc

e 
ra

tio

t̂ y2

t̂ yp

t̂ yc0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00 0.13 0.32 0.64 1.00

A B

Figure 4. Ratio of Variance of t̂MR to the 3 Estimators as a Function of p1, When
There are No Errors, and Max Catch Reporting. (A) For zero-truncated Normal
distribution with CVy50:32. (B) For zero-truncated Poisson distribution with
CVy50:55.
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p1 ¼ 0:15 and p1 ¼ 0:70. The table shows that the estimators improve sub-
stantially if reporters are those with high values of y, and are damaged if only
low y units report. This is easy to explain intuitively for t̂yc and t̂y2, since they
use the reported y values directly, so when large values of y are reported, less
uncertainty remains for the unseen domain. It is less obvious for t̂yp, since no
reported values of y are used in the estimator. The explanation is that when
reporters (ri ¼ 1Þ have large catch the correlation between ri and yi in the pop-
ulation increases, reducing the variance of the ratio estimator t̂yp. This shows
that reporting should be encouraged, especially for the most avid anglers.

4. SIMULATION STUDIES TO EXAMINE INFERENCE
FOR POPULATION TOTALS

The bias in N̂ and its standard error estimate are known to be substantial when
the number of matches between the two capture periods is small. Since all the
proposed estimators are related to N̂, we wanted to examine their bias and con-
fidence interval coverage, especially for low reporting rates. We were also
interested in the performance of the estimators for complex designs as these
are common in dockside samples used for validation. Therefore, we conducted
simulation studies to examine these issues.

In the first study, we investigated the performance of the estimators for SRS
designs under several settings for ðn2; p1Þ, some of which resulted in a small
number of matches. For each estimator, a 95 percent normal theory-based con-
fidence interval was calculated from each simulated sample and its coverage
noted. The standard errors were calculated with off-the-shelf survey software
(R’s Survey package) (Lumley 2004), using the Taylor series-based variance
estimates for ratio estimators. The variance estimator for t̂y1 was that proposed
in Olkin (1958), which ignores the variability in the estimated W, that is, we
calculated an estimate of V ð̂tMRÞ (in A.11). The details of the simulation study
and results mentioned in Section 4 are contained in the supplementary materi-
als. The simulation study was conducted to investigate the performance for the

Table 1. Ratios of Variances When Reporters are Representative and Not
Representative when CVy5:32

p1 t̂yp t̂yc t̂y2

Var t̂jrepresentative reportingð Þ
Var t̂jlarge removal reportingð Þ

0.15 1.21 1.30 1.21
0.70 2.47 2.60 2.56

Var t̂jrepresentative reportingð Þ
Var t̂jsmall removal reportingð Þ

0.15 0.85 0.87 0.85
0.70 0.63 0.57 0.57
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proposed estimators under several settings for (n2, p1) when the validation
sample is SRS. Both the report has no errors and errors were considered in the
simulation study. In general the results showed that confidence interval cover-
age was near nominal (coverage rate estimates between 93.3 percent and 95.3
percent) for all but one of the 12 settings considered. The one exceptional
setting was ðn2; p1Þ ¼ ð800; 0:99Þ in a population that showed no errors in
reporting. For that case, the coverage of the confidence intervals based on t̂yc

and t̂y2 was about 90 percent. So the problem with coverage was not caused
by the low number of matches in this case.

A second simulation was designed to study performance of the estimators
for complex designs. The population and sample designs tested were chosen to
mimic some of the features of the data from the Texas iSnapper project. We
created the finite population structure by replicating each primary sampling
unit (PSU) in the Texas validation sample a number of times that was propor-
tional to its weight to obtain a population of 20,590 trips. The average number
of trips per PSU was 12. Then we simulated the “catch” data y for each trip
from a zero-truncated Poisson distribution with mean parameter 10. The simu-
lated population total is 205,583. We examined estimators for two forms of
“reported” data. For the first, we assumed perfect reporting ðy ¼ y�Þ: For the
second, erroneous reports were constructed by first computing y� ¼ yþ �;
where � was simulated as a mean 0 normal random variable, and then y*
rounded to an integer (or to 0 if negative). The variance of the normal random
variable was set (by trial and error) so that the correlation between y and y* in
the reporting domain was 0.66. In both cases, the reporting units were simu-
lated to be nonrepresentative, by selecting them randomly from among the
units in the largest 70 percent of the y values.

The validation sample was chosen according to a stratified cluster design
with PSUs selected with probability proportional to size, where the size meas-
ures were those associated with the PSUs in our application data. The strata
(weekday and weekend time periods) were defined as in the original data. The
fraction of PSUs in the sample that were chosen from the two strata (0.56 from
weekday, 0.44 from weekend) match the Texas dockside sample design. Two
levels for the number of PSUs sampled (27 and 60) and the reporting rate (0.04,
0.80) were selected for the simulations, and estimates were calculated based on
both the perfect and erroneous reports. Sampling was replicated 30,000 times.
Then t̂yp and t̂yc were calculated for each sample, along with two hybrid estima-
tors. The first was the complex sample analog of t̂y1 which takes the form of
t̂MR; but with W estimated from (10). The second estimator, which we denote
by t̂y2, was computed by simply substituting weighted estimates n̂1; t̂y; t̂y� in
(9). This estimator is not necessarily optimal even if there are no reporting
errors since the design effects for the two estimators may differ, but it is still
approximately unbiased and is simple to compute. For each simulation setting
and replicated sample, the estimator variances were estimated using both the
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Taylor series and the jackknife standard error options in R’s Survey package.
Ninety-five percent normal theory-based confidence intervals were computed.

A summary of the results is shown in Table 2. For each variance estimation
method/estimator/setting, three statistics describing the results of the 30,000
replicates were computed. First is the proportion of confidence intervals that
covered ty, which is reported in the column labeled “Coverage.” Next is the
average standard error of the estimate, reported in the column labeled “SE.”
The variance of each estimator was also computed over the replicates of the
simulation, as was the average of its replicate variance estimates. The relative
bias in the variance estimate was computed as the difference between the esti-
mated and simulated variance divided by the simulated variance. It is reported
as a percentage in the table as “RelBias.” A negative relative bias means that
the variance estimator is biased downward.

The results show that the Taylor series variance estimates do underestimate
the true variance for all estimators when the number of PSUs is small
(n2 ¼ 27Þ, resulting in confidence interval coverage that is less than nominal.
The jackknife estimate of variance performs better and provides closer-to-
nominal coverage of the confidence intervals. t̂y1 has especially low coverage
when n2 is small because it is slightly biased. As predicted from the SRS analy-
sis of section 3, t̂yp outperforms t̂yc for the small reporting rate, and the reverse
is true for the large reporting rate. The presence of reporting errors does
degrade the precision of all the estimators except t̂yp (which does not use y�Þ;
but t̂yc still maintains its advantage. The hybrid estimators show mixed results.
When the number of matches is very small (small p1 and n2Þ; t̂y1 does not per-
form well and t̂y2 is virtually identical to t̂yp as expected. When the number of
matches is large (large p1 and n2Þ; they outperform both t̂yp and t̂yc.

5. EXAMPLE

Red snapper is one of the most highly targeted species in the northern Gulf of
Mexico. Since the 1980s, this fishery has been listed as overfished, and drastic
reductions in both season and bag limits have been implemented to help this
population fully recover. Despite the stock being classified as overfished, the
population is recovering rapidly, and anglers are seeing more red snapper than in
previous years. Anecdotal and stock assessment reports both indicate higher
abundances of snapper, but these reports continue to be met with reductions in
federal season length, which was only 10 days long in 2015. This unique enigma
has led to heated conflicts regarding allocation among user groups in the fishery.
Much of the concern could be allayed with better data, specifically addressing
the uncertainty of recreational catch estimates. With several states trying new
management strategies, it is an ideal species to test the feasibility of smartphone
“app” technology for private recreational anglers to report their catch. Texas was
one of three states with a pilot program using the new technology for estimating
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red snapper catch in 2015. The Harte Research Institute (HRI) created iSnapper
to collect catch and effort data from recreational anglers targeting red snapper in
state and federal waters off the Texas coast. Here we apply the methods of this
paper to estimate the total catch of red snapper in 2015 in Texas by recreational
anglers in private boats using data from iSnapper.

Unlike Alabama and Mississippi, self-reporting of catch in Texas was vol-
untary in 2015. To validate the self-reports, HRI partnered with the Texas
Parks and Wildlife Department (TPWD), which routinely samples anglers in
dockside surveys using a probability sample of locations and time blocks to
produce the mandated estimates of fishing effort by recreational anglers for
NOAA. (See NOAA’s description of its survey methods at www.st.nmfs.noaa.
gov/recreational-fisheries/index.) The time blocks are stratified by weekday
and weekend, while the locations have unequal selection probabilities that are
proportional to a “pressure” measure, which is meant to capture the average
number of anglers using a particular site in past years. To augment the TPWD
sample, HRI also sampled in targeted high use marinas and boat ramps during
the first six days of the federal red snapper recreational season (June 1–10,
2015). These PSUs were treated as take-all strata for estimation (i.e., given
weights of 1). Catch counts were collected from every vessel intercepted during
sampled shifts. Vessel registration numbers were recorded and used, along with
day and time, to identify matches to trips submitted using the iSnapper app.

The number of intercepted trips in the validation sample was 421, which
were clustered in 27 PSUs, with 15 and 12 in the weekday and weekend strata,
respectively. The proportion of the trips previously self-reported was estimated
to be only p̂1 ¼ 0:04. The estimates of mean catch made from the validation
sample for the population and for the self-reporters were 9 and 10, respectively.
Thus the self-reporters are not representative, but rather have larger-than-
average catch. The CV of catch was estimated to be 0.68. The design effect for
the estimate of mean catch from the validation sample alone was about 1.4. The
accuracy of reporting was high when measured as a total, with only about a 3.8
percent higher catch reported than observed in the matched sample. However,
the correlation between y and y* was only about 0.66 due to the fact that the
erroneous self-reports were small in number but tended to be high outliers.

The estimates of catch from the four estimators, computed as described for
the complex design in the previous section, are shown in Table 3. (For context,

Table 3. Estimated Total Landings of Red Snappers in 2015 Using Four
Different Estimators and Two Standard Error Estimates

t̂yc t̂yp t̂y1 t̂y2

Estimate 61,659 58,686 59,422 58,789
SE (Taylor) 17,793 17,005 16,907 16,952
SE (Jackknife) 21,723 21,646 21,462 21,573
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the official 2015 estimate of red snapper catch from Texas is 32,062.) Because
of the very small self-reporting rate and imperfect correlation, we would expect
to find that t̂y1 and t̂y2 weight t̂yp more heavily than t̂yc, and that is what did
occur. The jackknife standard errors are larger than the Taylor standard errors
and, based on simulation results, are likely to represent the true uncertainty
more accurately. However, unlike the simulation results for the small number of
matches case, the (jackknife) standard errors are all similar. This could be
because of the larger-than-average catch of the self-reporters or some other
feature of its distribution that was not captured in the simulated population.

6. DISCUSSION

In this paper we have developed a methodology that uses participant-provided
data as a supplement to data collected by a probability sample. Such volunteer
data are increasingly easy to obtain, but as we have demonstrated here, its utility
depends on a variety of factors. For MRIP to consider this method of data collec-
tion as a replacement for their current catch and effort surveys for all species, they
would need to find a way to ensure an adequate reporting rate. If it were possible
to require reporting, as Alabama and Mississippi did for red snapper, this would
be easier to accomplish. For example, Alabama’s reporting rate was 25 percent
for private vessels and 67 percent for charter vessels in 2015 (Alabama DCNR/
Marine Resources Division 2015). Alternatively, if the most avid anglers could
be incentivized to cooperate at a high rate, even if the less active anglers did not,
this too could provide sufficient precision for catch estimates.

The best estimator will depend on the situation. Besides the reporting rate,
the accuracy of reporting is likely to vary from one application to another.
When a fish is easy to identify, like red snapper, the reporting errors are likely
to be fewer than for less familiar species. For catch of those species, anglers
are likely to misreport one species for another, causing low correlation between
reported and observed catch for both species. Thus if self-reports were to be
used for estimating catch of all species, the precision of estimates could vary
widely and the best estimator to use could vary also. When the reporting rate is
low, the number of matches is small, and the species is easy for anglers to iden-
tify, t̂y2 is our recommended estimator. Besides being easy to compute with
standard survey software and having an intuitively attractive form, it would be
near optimal among the estimators considered. When the number of matches is
large, t̂y1 would be recommended. For species that anglers cannot identify
easily, t̂yp may be best. In all our simulations, the jackknife estimators of var-
iance were at least as good, and sometimes better, than the Taylor series ones.
Thus we recommend jackknife estimators of variance for any estimator.

As with any estimator, nonsampling error can be even more problematic
than sampling error due to the bias it can introduce. The usual sources of
nonsampling error, nonresponse, and measurement error are typically less
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problematic in dockside surveys of anglers than in other types, such as the
effort surveys made retrospectively by phone or mail. For example, nonres-
ponse for private anglers in the TPWD survey is about 4 percent. In addition,
the interviews are conducted by biologists or technicians, who are well quali-
fied and trained to identify species, so that measurement error is minimized.

However, there are other assumptions required in the implementation of the
data collection operation that are in common with those of Capture-Recapture
models. The first of these is that there is no matching error, meaning that
matching the self-reports to access point encounters is error-free. This holds
reasonably well in this application since red snapper angling requires a boat.
Catch does not need to be associated with individual anglers, but rather just the
boat trip, which can be identified with good accuracy by a unique registration
number and date/time of arrival at shore. The time report is critical in order to
avoid mismatches due to multiple trips per day, so anglers must be educated
about the definition of return time. For species that may be caught without a
boat, accurate matching will be more difficult, so no attempts to implement
these methods have been made.

More problematic is the Capture-Recapture assumption that the population
is closed, meaning that no members enter or leave during the sampling period.
This holds only if no angler trips eligible to self-report become inaccessible to
selection in the verification sample. But anglers who return from their trip to a
private dock, such as one behind a home, are removed from the validation sam-
pling frame since dockside surveys can only occur at publicly accessible loca-
tions. The access points in the frame are often referred to as public sites,
though some private marinas do allow samplers to conduct dockside surveys
on their properties. This is a vexing problem for all recreational angler data col-
lection systems. In the estimation system in current use, no measure of catch is
available for trips ending at private sites, though counts of these trips are
obtained from the effort survey. The unverifiable assumption that catch per trip
is identical for trips ending at public and private sites has to be made in order to
obtain an estimate of catch. Though the Capture-Recapture approach does pro-
vide some information about catch for the private access point anglers via their
self-reports ðy�Þ, we still have no source of data for y for these trips. Thus the
estimators will not incur bias only under the unverifiable assumption that report-
ing rate and accuracy is the same for public and private trips. One possible alter-
native that has been considered is that the verification sample could add some
intercepts that occur before landing, such as at fueling sites or on-the-water
encounters. This would add its own problems of assessing probabilities of selec-
tion into the verification sample, so that further work is needed on this issue.

The Capture-Recapture model also requires assumptions we describe collec-
tively as independence. This encompasses both independence of selection in
the two capture periods (selection into the 2nd sample does not depend on cap-
ture in the first), as well as homogeneity of selection probabilities in the verifi-
cation sample. We have generalized the estimation method so that it accounts
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for known differences in selection probabilities due to the probability sample.
The problem occurs when those differences are not known. For example, if the
decision to self-report is influenced by selection into the validation sample, this
altered probability cannot be accounted for in estimation, and thus can bias the
estimator. This could occur if a returning angler was more likely to report his
catch if he could anticipate that he would be in the validation sample (what
Capture-Recapture methodologists would refer to as “trap happy,” but with the
two sampling periods having reversed labels). Care must be taken to prevent
this problem by the way the sampling operation and collection of self-report
data is implemented. One way to ensure angler reporting status is not influ-
enced by being included in the validation sample would be to conduct the sur-
vey out of the view of returning anglers so that the decision to report, which
must occur prior to removing fish from the boat in the mandated reporting
states, cannot be influenced by the knowledge that they will be interviewed.
However, this is difficult to accomplish because the most reliable access to
returning anglers is at their landing point. An alternative approach is that used
by Mississippi’s program, which makes prior authorization for a red snapper
trip mandatory. Specifically, anglers must obtain a trip ID (“open” a trip) prior
to departure via the website or app. Since this decision is made by the angler
prior to the validation sample encounter, it cannot be influenced by the recap-
ture event. The angler is incentivized to provide catch information after return
(“close” a trip) by disallowing issuance of a new trip ID to the angler before
he/she closes any open trip. Remaining open trips are followed up by the state
agency to obtain catch. If neither of these approaches is used, there is a risk of
bias due to differing reporting rates for verified and unverified angler trips.

Still, despite these problems, an estimation procedure that uses angler self-
reports holds promise for improving the quality and timeliness of the estimates
of catch over those currently available. The decreasing response rates for
household surveys nationally have been shared by the effort surveys that are
part of the current MRIP estimation methodology. Their dockside access point
surveys, which are the ones used here as validation samples, enjoy a much
higher response rate. Since all data collection is completed at the time that the
trip is made, there is potential for a much faster production of estimates than
the current MRIP system since the effort survey is conducted retrospectively.
Finally, fisheries management agencies report that some angler advocacy
groups are anxious to provide data to improve what they perceive as inad-
equately precise estimates. This methodology provides a valid way to make
use of their shared data.

Supplementary Materials

Supplementary materials are available online at https://academic.oup.com/jssam.
They include the details of the simulation study and results mentioned in
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Section 4. The simulation study was conducted to investigate the performance
for the proposed estimators under several settings for (n2, p1) when the valida-
tion sample is SRS.

APPENDIX

A.1 VARIANCES OF THE ESTIMATORS

As noted in (2) and (5), t̂yp and t̂yc are ratio estimators, so their variances can
be approximated using Taylor linearization. Thus we see (e.g., Lohr 2009, eq.
4.11) that

V ð̂typÞ ¼ n2
1VarðB̂pÞ �

N2 1� n2
N

� �
n2

S2
dp; (A.1)

where S2
dp ¼

PN
i¼1 ðyi � BpriÞ2=ðN � 1Þ: This residual variance can be rewrit-

ten as

S2
dp ¼ S2

y þ �y2 1þ 1
p1

� �
� 2�y�y1 (A.2)

where �y ¼ ty=N and S2
y ¼

PN
i¼1 ðyi � �yÞ2=ðN � 1Þ are the mean and variance

of y in the entire finite population, p1 ¼ n1=N is the fraction of the population

in the reporting domain, and �y1 ¼
Pn1

i¼1 yi=n1 is the mean of y in this domain.

A similar computation yields the variance for t̂yc to have a similar form to

(A.1), but with residual variance

S2
dc ¼ S2

dp þ
1
p1

�y=�y�1
� �2

S2
1y� � 2 �y=�y�1

� �
S1;yy�; (A.3)

where �y�1 ¼ ty�=n1 is the mean of y* in the reporting domain. The covariance
of the two estimators also has the form shown in (A.1), but with residual
covariance

Sdp;dc ¼ S2
dp � ð�y=�y�1ÞS1;yy� : (A.4)

Next we consider the variance of the optimally weighted average of these two
estimators as defined in (6). Its variance is (Cochran 2007 (6.100))

V ð̂tMRÞ ¼
V ð̂typÞV ð̂tycÞ � Cov2ð̂typ; t̂ycÞ

V ð̂typÞ þ V ð̂tycÞ � 2Covð̂typ; t̂ycÞ
; (A.5)

The covariance of the two ratio estimators is
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Covð̂typ; t̂ycÞ �
N2 1� n2

N

� �
n2

Sdp;dc ¼
N2 1� n2

N

� �
n2

S2
dp � �y=�y�1

� �
S1;yy�

n o
; (A.6)

where S1;yy� ¼
Pn1

i¼1ðyi � �y1Þðy�i � �y�1Þ=ðn1 � 1Þ is the covariance between y

and y* in the reporting domain. Then from (A.1) through (A.6), we have

V ð̂tMRÞ �
N2ð1� n2

N Þ
n2

ðS2
dp � p1S2

1;yy�=S2
1y� Þ; (A.7)

where S2
1y� ¼

Pn1
i¼1 ðy�i � �y�1Þ

2=ðn1 � 1Þ is the variance of y* in the reporting
domain.

Finally, it can be observed from (9) that t̂y2 can be written as a constant (ty�)
plus a ratio estimator

t̂y�ry� ¼ n1

P
i2S2

yi � riy�i
� �

n̂1
:

Therefore, the variance of t̂y2 can also be approximated using Taylor lineariza-
tion, yielding

V ð̂ty2Þ �
N2 1� n2

N

� �
n2

S2
dp þ p1ðS2

1y� � 2S1;yy� Þ
n o

: (A.8)

In order to facilitate comparison of these variances, it is helpful to rewrite them
in canonical form as follows:

V ð̂typÞ ¼
t2
y 1� n2

N

� �
n2

CV2
y þ 1þ 1

p1

� �
� 2

�y1

�y

� �	 

; (A.9)

V ð̂tycÞ � V ð̂typÞ þ
t2
y 1� n2

N

� �
n2

CV2
1y�

p1
� 2

�y1

�y

� �
R1;yy�CV1yCV1y�

( )
; (A.10)

V ð̂tMRÞ � V ð̂typÞ �
t2
y 1� n2

N

� �
n2

p1
�y1

�y

� �2

R2
1;yy�CV2

1y

( )
; (A.11)

V ð̂ty2Þ � V ð̂typÞ þ
t2
y 1� n2

N

� �
n2

p1
�y�1
�y

CV1y�
�y�1
�y

CV1y� � 2
�y1

�y
R1;yy�CV1y

� �	 

:

(A.12)
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